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Abstract. This paper presents an extension of the Self Organizing Map model 
called Associative SOM that is able to process different types of input data in 
separated data-paths. The ASOM model can easily deal with situations of 
incomplete data-patterns and incorporate class labels for supervisory purposes.  
The ASOM is successfully compared with Multilayer Perceptrons in the 
incremental classification of six erythemato–squamous diseases, where only 
partial data is available in successive steps. 

1   Introduction 

Supervised neural models as Multilayer Perceptrons (MLP) and Radial Basis 
Functions (RBF) have demonstrated in many applications their capability for 
resolving classification problems. However in a real situation, the necessary 
information for a classification task often is not completely obtained or is not acquired 
at the same time. The incomplete data and the great heterogeneity of information are 
usual situations in real data, a very common problem found in medical diagnosis. The 
correct diagnosis is a classification problem done in two steps of incremental data 
acquisition: a compilation of symptoms and, if it is necessary, several laboratory 
analyses. The first step is critical in many diseases, and physicians usually can decide 
the medication using only the clinical inspection. However, the second step sometimes 
is necessary to obtain a correct diagnosis. This second data acquisition is modified 
when new laboratory tests are discovered and old ones are abandoned. This is a good 
example of what we call an incremental classification problem. 
This variability and heterogeneity in the data sources is not well handled by the most 
known neural models as MLP and RBF networks supervised with the mean squared 
erro (MSE). An automated classification system must present high flexibility in its 
structural implementation to deal with the continued apparition of new data sources or 
the deletion of obsolete ones. A neural classification system should be able to deal 
with the different data sources in an associative process, where each data source could 
be easily included or excluded during the classification process. The solution consists 



in including separated data-paths for the different data sources with certain modulator 
mechanism to select the information incoming to the neural system. 
A well-known neural model with associative behavior is the SOM network [3]. In this 
paper the multi-path data structure is implemented in the SOM model by extending the 
description of the SOMPACK available in [7]. We call it the Associative SOM 
(ASOM). In Sect. 2, we describe the problem selected to represent an incremental 
classification task. It is a real dermatology database of the differential diagnosis of six 
erythemato-squamous diseases. Sect. 3 contains an outlook of the ASOM and its 
learning schemes. Finally, the learning experiments with the ASOM and the MLP are 
presented in Sect. 4. 

2   Differential diagnosis of erythemato-squamous disease 

The differential diagnosis of erythemato-squamous diseases is a difficult problem in 
dermatology. It has been studied using several IA algorithms [2]. Usually a biopsy is 
necessary for the correct and definitive diagnosis. Patients are evaluated by the 
physician in two steps: first the clinical inspection of the degree of erythema, scaling 
and the compilation of historical data that configure 12 features. In the second step, 
skin samples have to be taken for the evaluation of 22 histopathological features 
determined by an analysis under a microscope. This is an expensive process, not 
always necessary to have a correct diagnosis, and the patient is not medicated until the 
results are obtained.  
The database available in [6] contains 34 features: the ‘family history’ has the value 1 
if any of these diseases has been observed in the family, and 0 otherwise. The ‘age’ 
represents the age of the patient. The rest of the features are separated in two groups: 
10 clinical features and 22 histopathological features, all of them with numeric values 
in the range of 0 to 3. Here, 0 indicates that the feature was not present, 3 indicates the 
largest amount possible, and 1, 2 indicate the relative intermediate values. 
We separated the features in three groups: 12 clinical features, 22 histopathological 
features and 6 features with the class labeling. The class labels codification contains 6 
binary input components assigning one-class-to-one-component. The rest of the 
features were normalized to mean zero and variance scaled to value one. This 
preprocess ensures that all input components present a similar importance for the 
neural classifiers. Also, in the case of learning simulations with the MLP, this 
preprocess allows to manage the situations where some input data is not presented, by 
assigning null values to the missing input components (their mean values). 
The results found by Güvenir et al. [2] were obtained using 10-fold cross-validation 
evaluation. They claim that the VF15 algorithm (Voting Features Intervals) achieves 
96.2 % accuracy on the dermatology dataset and the 99.2% when VF15 weights are 
selected with a genetic algorithm. 



3   Associative Self-Organized Map (ASOM) 

The ASOM model is a SOM extension that allows the incremental classification and 
introduces a certain associative supervision during the learning process by means of 
the inputs, instead of using the class labels for supervising the outputs. The map 
receives different paths of information, that we call data-paths, each one of them 
processing features from similar sources. Another data-paths can introduce 
information about the correct classification of the pattern. With such an input 
structure, the neurons in the map generate prototypes associating all the incoming 
information from different data sources and are able of managing situations with 
missing data by a simple modulator method of the gains assigned to the input-paths. 
This idea was originally proposed in [1] using Radial Basis Units with a competitive 
algorithm.  

3.1   The ASOM description 

Let’s denote the neuron label by ‘i’ and the weights or prototypes associated to it by 
‘wi’. Consider the input data divided in a number of sub-patterns D, in such a form 
that the different data sub-patterns ‘d’ would be processed by the corresponding data-
path ‘d’, denoted as super indexes. The symbol N(d denotes the number of components 
or data inputs of the data-path ‘d’. The sub-weights wi

(d, represent the fraction of 
weights of the neuron ‘i’ assigned to the data-path ‘d’. Each data-path processes 
similar information and calculates the Euclidean distance between sub-patterns and 
sub-weights like the SOM model does. So we calculate the distance in the data-path 
‘d’ by: 
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The path-excitation is calculated by multiplying the path-distance by a particular path-
gain coefficient, g(d (eq. 2). The sum of the path-excitations gives the whole excitation 
of the neuron ‘Exci‘ (eq. 3). Notice that if all the path-gains present value one, the 
whole excitation is the Euclidean distance between the complete data pattern and the 
weights of the neuron, as in the SOM model. 
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If a certain path-gain is set to zero, the data introduced by the corresponding path 
provide a low contribution in the whole excitation of the neurons, and does not decide 
which neuron is the winner. However, if the path-gain has a high value, its data-path 
predominates in the selection of the winner neuron and, therefore leads the selection 
of the winner neuron in both the recall and the learning processes. During the recall 
phase, the class-gain must be annulled and the rest of path-gains can be modulated to 
process situations with incomplete data patterns, assigning null values to the gains in 
paths with missing data. 



Another difference with the SOM model is the output response. The output of the 
SOM is the index of the winner neuron, but the ASOM outputs the winner’s sub-
weights in the class-path. If the winner prototype corresponds to a data region with a 
clear classification result, the output of the network should only present a value one in 
the corresponding class-component and the rest with value zero. When the neuron 
prototype is positioned in a data region between two classes, the output will present 
two high responses (near value 0.5) for the corresponding classes, as the result of the 
interpolation between two class labels. These special neurons must be recognized as 
neurons associated to map regions where there exist a high indetermination about the 
class. The output response with the sub-weights of the class-path also permits the 
calculation of error measures like the MSE, so the comparison with other neural 
models based in the MSE is straightforward. 
The most common features of a disease can also be identified by recognizing the 
winner neuron among the neurons of the same class. This best neuron of the class 
corresponds to the best matching neuron when we exclusively evaluate the map with 
the class labels. The ASOM also presents all the interesting properties of the SOM 
model like the possibility of the visual inspection of the topological map 
representation.  
However we must realize that the path-gains only influence in the choice of the winner 
neuron, but the training algorithm is the original SOM algorithm, that remains 
essentially like an unsupervised learning process. The ASOM is like an associative 
memory [4] providing association of data patterns and labels. 
We used, for training the maps in batch mode and for the weight initialization, the 
functions available in the SOMPACK [7]. The map size chosen along all the 
experiments was 6x12 neurons, because this map size was suited to the two first PCA 
projections. 

4. Experiments 

The original dataset contains 366 patterns and 6 classes of diseases. We applied a 10-
fold cross validation method for evaluating the performance of the maps, because the 
number of samples is quite low in certain classes. Ten data groups where generated 
randomly by separating the dataset in a training set with the 95% of the samples and 
the evaluation set with the 5%, avoiding duplication of the samples in the datasets. 
For the evaluation of the neural classifiers, we formulate three possibilities: use 
exclusively clinical data, use only histopathological data, or use both of them. This 
scheme is suited for real diagnosis, where the physician obtains first the clinical 
information and later can access to the histopathological information. At the first step 
only the clinical information is processed, so if the classification result is clear, the 
extraction of the histopathological data can be avoided. However if the clinical data 
classification were unclear between two classes, the physician would decide if either is 
possible to find medication focused in both diseases or to obtain extra information 
from a histopathological analysis that would refine the response of the classifier. This 
is a clear example of that we call the incremental classification problem. 



4.1 Experiments with ASOM 

The maps must face with three types of data: clinical, histopathological and class 
labels, therefore their input structure presents three data paths. The maps were trained 
in two fixed number of cycles (600 and 1200 cycles), although better methods based 
in the evaluation of the MSE will be considered in future studies. We defined three 
learning schemes for the path-gains. The first scheme, called the unbalanced-gain 
training (UG), assigns value 1 for the three gains along the training process. The 
second scheme, called balanced-gain training (BG), tries to balance the excitations of 
the data-paths assigning values to the gains proportional to the inverse of the number 
of input components in the path. The values selected were: value 1 for the class-path, 
value 0.25 for the histopatological path and value 0.5 for the clinical path. 
The third scheme, called balanced increasing training (BIG), presents path-gains 
varying during the training process in order to lead the associative learning of the map 
with the classification labels as the predominant influence. The previous results 
obtained in the UG and BG schemes were better for the second one, so we decided to 
balance the evolving gains. A possible training strategy gives initially a high value to 
the class-gain (value 1) and low values to the path-gains of the rest of the data-paths 
(for example value 0.1). As training progresses, the value of the class-gain is 
maintained constant, but the rest of the path-gains are increased exponentially to 
promote an increasing importance of the data pattern in the development of the map. 
With this scheme, in the beginning of the learning process, the map neurons are 
mainly clustered by the class labels, and the topological ordering of the map is 
established by the data-pattern that have a less influence in the choice of the winners. 
As the training progresses, the gains of the data are higher and the pattern gets more 
influence in the result of the competition process.  

The BIG learning scheme needs a step-wise increase in the gains. If gains are 
continuously increased, the subspaces of data are expanded quicker than the 
development of the map, and the resulting map remains contracted after many cycles 
with the training sets. This behavior reveals that the map needs several cycles with 
constant gains to get expanded over the data subspaces. The solution for increasing 
the gains, is to maintain them stable during a number of cycles that we call step. 
Several values of steps were tested taking the values: 3, 6, 10, 60 and 120.  The best 
MSE was obtained with the map trained 100 steps of 6 cycles (600 cycles). The main 
results are resumed in table 2. The ASOM in the UG and BG schemes presented the 
same errors whether trained 600 or 1200 cycles, while the BIG scheme showed 
different errors depending of the training cycles. The results of the ASOM for two 
BIG schemes with step value 6 during 600 cycles (case 100x6) and 1200 (case 200x6) 
cycles are also presented in table 2.  

4.2 Experiments with Multilayer Perceptrons (MLP) 

The MLP model was simulated with the same data groups in a 10-fold cross 
validation, separating in each data group a 5% of the training data for early stopping 
evaluation. The chosen learning algorithm was the Levenberg-Marquardt algorithm 



implemented in the Neural-Toolbox of Matlab. Two different types of architectures 
where simulated: the first network architecture with one hidden layer and the output 
layer with six units associated to the six class labels (represented by 34-X-6). The 
second network architecture consisted in six separated networks including one hidden 
layer and only one output-class unit (represented by 34-X-1). Each one of the six 
networks was assigned to recognize only one disease-class and reject the rest of the 
classes. Both architectures received the 34 input components. In the evaluations with 
partial data, the unavailable components were assigned value zero.  
As the numbers of samples in the classes were so uneven, in the first architecture the 
training sets were augmented by replicating the samples of classes with less 
representation to equilibrate the number of samples in all classes. In the second 
architecture, the number of samples of the class recognized by the network was also 
augmented to equilibrate the sum of samples in the rest of the classes.  
The number of hidden units in the MLP networks were estimated with  an previous 
learning tests with the whole dataset during a fixed number of cycles (50 was enough 
in all cases). The first network was estimated using only even numbers of units from 6 
to 30 (13 numbers), and the second networks were estimated using even numbers of 
units from 4 to 24 (11 numbers). Each network was simulated five times (in total 120 
simulations) with a target error of value 10-12 (with this target all networks were 
trained till the cycle 50). The MSE evaluated in the 50th cycle were averaged in the 
five exemplars of the networks. The numbers of hidden units of the networks with the 
lowest MSE were selected for the training in the cross validation method (see table 1). 

Table 1. Number of hidden units selected in the MLP networks 

MLP Networks Number of hidden units 
MLP with 6 outputs 
MLP-Psoriasis 

24 
22 

MLP-seboreic dermatitis       18 
MLP-lichen planus 12 
MLP-pityriasis rosea             10 
MLP-cronic dermatitis          12 
MLP-pityriasis rubra pilaris  12 

The selected architectures were trained during 50 cycles with the training data and 
each cycle the resulting network was stored. The exemplar with the minimum MSE in 
the 5% of the training data (separated for this early stopping method) was selected for 
the evaluation with the test dataset. The same combinations of incomplete data that 
were evaluated with the maps were performed during the evaluation of the MLP 
classifiers, and the resulting classification errors are presented in table 2.  
The graphs in the figure 1 represent a detailed comparison between the performance 
of the networks in the best MLP classifier (figure 1b) and the ASOM networks trained 
with the BIG scheme (figure 1a). 



 

Fig. 1. Both graphs resume the classification percent errors measured in the 10 validation 
groups and the resulting average. The bars represent the resulting errors with only the clinical 
data, only the histopathological data and the complete data patterns. Graph a) presents the 
results obtained in the ASOM network trained with balanced increasing gains with step value 6 
(ASOM-BIG-100x6 in table 2). Graph b) presents the results in the six MLP networks with one 
class output (MLP-34-X-1 architecture in table 2)  

 



Table 2. Average classification errors from 10-fold cross validation in the ASOM and MLP 
networks, for the three types of evaluation with the two data groups. 

Neural Network 
Model 

Only 
Clinical 

Data 

Only 
Histopathological 

Data 

Complete 
Data 

ASOM – UG(600) 13,68% 6,31% 4,21% 
ASOM – BG(600) 12,10% 7,36% 3,68% 

ASOM-BIG(200x6) 15,78% 6,31% 3,15% 
ASOM-BIG(100x6) 14,21% 5,78% 3,15% 

MLP-34-X-6 45% 8% 6% 
6 MLP-34-X-1 32% 7% 4% 

5. Conclusions 

The paper presents a SOM extension that allows introducing different information 
paths to the maps. These data-paths can be processed separately by modulating their 
corresponding gains. This extension turns the non-supervised SOM model into a 
supervised one by means of the associative supervision with the class-labels used as 
inputs in a certain class-path. It was tested with the differential diagnosis of six 
erythemato–squamous diseases. This classification problem is suited for evaluations 
of incomplete data information as it deals with the combination of two kinds of 
information attributes: the clinical and the histopathological information. The MLP 
classifiers and the Güvenir results with the VF15 algorithm have been compared with 
those of ASOM and all of them obtained for the complete data classification a similar 
classification error around 4%. However if we compare those situations where 
incomplete data is presented to the classifier, only clinical or histopathological data, 
the ASOM performs quite better than the MLP networks.  
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